昆虫学报 ›› 2021, Vol. 64 ›› Issue (4): 510-522.doi: 10.16380/j.kcxb.2021.04.010

• 综 述 • 上一篇    下一篇

昆虫滞育表观遗传调控的研究进展

安颢敏, 刘文, 王小平*   

  1.  (华中农业大学植物科学技术学院, 昆虫资源利用与害虫可持续治理湖北省重点实验室, 武汉 430070)
  • 出版日期:2021-04-20 发布日期:2021-04-25

Advances and perspectives of epigenetic regulation of insect diapause

 AN Hao-Min, LIU Wen, WANG Xiao-Ping*   

  1. (Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)
  • Online:2021-04-20 Published:2021-04-25

摘要:

滞育是昆虫躲避不良环境的一种策略,对延续昆虫种群具有重要意义。特别是昆虫的兼性滞育,能够受环境的周期性季节变化影响,表观遗传可能在其中扮演重要角色。表观遗传是不依赖DNA序列改变所产生的可遗传变异,包括DNA、RNA、蛋白质和染色质水平上的各种表观遗传调控过程,可能参与生物的发育可塑性。昆虫滞育表观遗传调控主要包括两个方面:一是表观遗传调控如何响应滞育诱导的环境信号;二是环境信号诱导的表观遗传调控如何作用昆虫滞育。尽管已有报道提示DNA甲基化可以响应光周期信号,组蛋白乙酰化能够耦联昆虫内分泌信号,但表观遗传调控参与昆虫滞育的具体机制尚不完全清楚。表观遗传调控昆虫滞育在不同滞育类型的昆虫中都有报道。对于同一滞育类型,不同表观遗传过程之间可能存在协同,这种协同作用如何响应环境信号,又如何精确调节昆虫滞育仍不得而知。总之,现有研究仅仅展示了表观遗传调控昆虫滞育的可能性,昆虫滞育表观遗传调控的分子机制亟待深入研究,特别是以下几个方面:(1)表观遗传响应滞育诱导环境信号的分子机制研究;(2)表观遗传耦联内分泌调控的分子机制研究;(3)介导表观遗传调控的细胞信号转导研究;(4)表观遗传的协同调控在昆虫滞育中的功能研究。

关键词: 昆虫, 滞育, 表观遗传调控, DNA甲基化, 翻译后修饰;小非编码RNA

Abstract:  Diapause is a strategy for insect to avoid harsh environment, and has a great significance for continuation of insect population. In particular, facultative diapause can be affected by periodic seasonal changes, in which epigenetics may play critical roles. Epigenetics refers to heritable variations independent of DNA sequence, including various modifications at DNA, RNA, protein and chromatin levels, and may be involved in development plasticity. The research of epigenetic regulation of insect diapause mainly focuses on two aspects: one is how epigenetic regulation respond to environmental signals, and the other is how environmental signal induces epigenetic regulation in insect diapause. Although it has been reported that DNA methylation can respond to photoperiodic signal and histone acetylation can be coupled with endocrine systems, the detail mechanisms of epigenetic regulations of insect diapause, however, are not completely revealed. Regulations of diapause induced by epigenetics have been reported in multiple types of insect diapause. For the same diapause process, there may be co-regulation between different epigenetic mechanisms. However, how this synergy responds to environmental signals and how it precisely regulates insect diapause are still unknown. In conclusion, the previous research only indicated the possibility of epigenetic regulation in insect diapause, but the molecular mechanisms are scarcely known and need further study. Especially the following aspects might be critical in the future research: the molecular mechanism of epigenetics responding to diapause-induced environmental signals, the molecular mechanism of epigenetics coupled with endocrine regulation, the cell signal transduction of epigenetic regulation, and the synergetic regulation of epigenetics in insect diapause.

Key words: Insects, diapause, epigenetic regulation, DNA methylation, post-translation modification, small non-coding RNA