›› 2017, Vol. 60 ›› Issue (9): 1093-1104.doi: 10.16380/j.kcxb.2017.09.013

• 综述 • 上一篇    下一篇

取食十字花科植物的植食性昆虫与寄主植物硫苷的互作

马小丽1,2,3,4, 何玮毅1,2,3,4, 尤民生1,2,3,4,*   

  1. (1. 福建农林大学闽台作物有害生物生态防控国家重点实验室, 福州 350002; 2. 福建农林大学应用生态研究所, 福州350002;  3. 闽台特色作物病虫生态防控协同创新中心, 福州 350002; 4. 农业部闽台作物有害生物综合治理重点实验室, 福州 350002)
  • 出版日期:2017-09-20 发布日期:2017-09-20

Interactions between insect herbivores feeding on cruciferous plants and host plant glucosinolates  

MA Xiao-Li1,2,3,4, HE Wei-Yi1,2,3,4, YOU Min-Sheng1,2,3,4,*   

  1. (1. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2. Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 3. Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 4. Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China)
  • Online:2017-09-20 Published:2017-09-20

摘要: 十字花科植物含有硫苷黑芥子酶防御系统,也被称作“芥子油炸弹”,是目前研究最多的植物防御机制。硫苷和黑芥子酶分开储存在不同的植物细胞中,当植物受到昆虫取食、病原微生物侵害、机械损伤等危害时,植物体内的黑芥子酶与硫苷结合,催化其产生有毒的水解产物——异硫氰酸酯(isothiocyanate, ITC)、腈类化合物(nitrile)和其他活性物质等,从而避免或者减少植物受到损害。然而在长期的协同进化过程中,十字花科蔬菜害虫也具有了相应的反防御机制才能够适应寄主。这种反防御机制根据硫苷种类的不同,也具有多样性,且不仅表现在十字花科广食性和寡食性昆虫之间,还表现在广食性和寡食性昆虫之内。本文综述了十字花科植物硫苷类型、硫苷黑芥子酶防御体系和害虫诱导的植物硫苷防御反应,并从不同十字花科蔬菜害虫如何代谢、隔离、利用和转运硫苷等方面讨论了害虫的反防御机制,以期为研究十字花科蔬菜害虫与寄主植物协同进化提供借鉴和参考。  

关键词: 硫苷-黑芥子酶, 协同进化, 反防御, 广食性昆虫, 寡食性昆虫

Abstract: Cruciferous plants (Cruciferae) possess a strong glucosinolate-myrosinase defense system, known as the “mustard oil bomb”, which has been well characterized as a plant chemical defense mechanism. Glucosinolates and myrosinases are separately stored in different compartments in host plant cells. However, insect herbivore feeding, pathogen attacks and mechanical injuries may trigger interactions between these compounds, whereby myrosinase hydrolyzes glucosinolates to generate toxic products, such as isothiocyanate, nitriles and other organic thiocyanates. Insect herbivores, in turn, have evolved ingenious detoxification strategies to overcome plant chemical defenses. Corresponding to different glucosinolate profiles, these strategies are also diverse, not only between the groups of generalist and specialist herbivores, but also within each of the groups. Based on the previous studies, the major types of glucosinolates, the glucosinolate-myrosinase defense system, and the insect herbivory-induced defense responses of cruciferous plants were reviewed in this article. And how cruciferous insect herbivores detoxify, sequestrate, transport and utilize glucosinolates of their host plants were elaborated with a view to provide insights into the evolutionary adaptation of cruciferous plants and insect herbivores.  

Key words: Glucosinolate-myrosinase, co-evolution, counteradaptation, generalist herbivores, specialist herbivores