›› 2011, Vol. 54 ›› Issue (6): 694-700.doi:

• 研究论文 • 上一篇    下一篇

1961-2005年西藏飞蝗潜在分布的变化

 封传红, 单绪南, 郭聪, 罗林明   

  • 收稿日期:2010-11-07 出版日期:2011-06-20 发布日期:2011-06-20
  • 通讯作者: 封传红 E-mail:fengchuanhong8@163.com
  • 作者简介:封传红, 男, 1973年5月生, 湖南衡南人, 博士, 高级农艺师, 主要从事昆虫生态研究和植物保护工作
  • 基金资助:

    农业部西藏飞蝗发生规律与监测预警资助项目

The change of potential distribution of Locusta migratoria tibetensis Chen (Orthoptera: Acrididae) from 1961 to 2005

FENG Chuan-Hong, DAN Xu-南, GUO Cong, LUO Lin-Ming   

  • Received:2010-11-07 Online:2011-06-20 Published:2011-06-20
  • Contact: FENG Chuan-Hong E-mail:fengchuanhong8@163.com

摘要: 青藏高原是气候变暖的敏感地区, 温度是影响青藏高原昆虫分布的重要因素。作为青藏高原的本地物种的蝗虫, 西藏飞蝗Locusta migratoria tibetensis Chen对高原升温的反应就是获得的有效积温增加, 分布范围扩大。为了准确估计西藏飞蝗发生面积, 以期为西藏飞蝗监测、 预警及控制提供依据, 本研究以1961-2005年90个高原气象站点地面温度资料计算了西藏飞蝗的有效积温(accumulated degree-days, ADD), 建立了1961-2005年有效积温与地理位置的模型; 并根据这些模型利用GIS技术, 计算了各年西藏飞蝗的潜在分布面积(area of potential distribution, APD)。结果表明: 温度升高能明显增加西藏飞蝗获得的有效积温, 西藏飞蝗的分布主要沿高原河谷分布。1961-2005年, 西藏飞蝗平均潜在分布面积为91 081 km2, 约占高原面积3%; 次热年1998年西藏飞蝗的潜在分布面积最大, 达142 988 km2, 是最冷年1968年的1.9倍。相关分析表明: 西藏飞蝗潜在发生面积与年平均地面温度显著相关。趋势线分析表明: 45年间青藏高原每年平均增温0.0301℃, 而西藏飞蝗潜在发生面积平均每年增加504.38 km2, 两者之比为16 756.8, 温度的增加能够引起西藏飞蝗潜在分布面积大幅上升。本文为全球气候变暖对青藏高原生态的影响提供了事例依据。

关键词:  , 西藏飞蝗; 青藏高原; 潜在分布; 气候变暖; 有效积温

Abstract:  Temperature is one of important environmental factors affecting on insects in the Tibetan Plateau, a region sensitive and vulnerable to climate warming, for the cold plateau climate. As an endemic species, Locusta migratoria tibetensis Chen may respond to warming climate on the plateau by increase of the accumulated degree-days (ADD) from habitat and expansion of its distribution. In order to depict the relationship between temperature changes and the ADD of the locust and to predict the distribution and occurrence of the locust in this region under the conditions of climate warming, we used surface temperature data from 90 weather stations on the Tibetan Plateau during the period of 1961-2005 to calculate the ADD of the locust and the annual area of potential distribution (APD) in ArcGIS according to the linear regression models of the ADD to geographical position. The results suggested that climate warming could increase the locust achievable ADD and APD to a great extent. The raster ADD maps indicated that in most cases the locust was distributed along the valley of main rivers over the plateau, and the potential distribution area of the locust was about 91 081 km2(3% of the Tibetan Plateau area). The largest APD occurred in 1998, the second hottest year, was 142 988 km2, which was 1.9 times the APD in 1968, the coldest year. There was a significant correlation between the APD and the annual surface temperature. The annual surface temperature increased at the speed of 0.0301℃ per year, while the APD increased at the speed of 504.38 km2 per year. The ratio of the increasing speed of APD to that of temperature was 16 756.8, indicating that a little increment in temperature would bring a great extension in distribution of L. migratoria tibetensis. This study presents an example of influence of global warming on plateau ecology.

Key words: Locusta migratoria tibetensis, Tibetan Plateau, potential distribution, climate warming, accumulated degree-days (ADD)