昆虫学报 ›› 2022, Vol. 65 ›› Issue (8): 1045-1055.doi: 10.16380/j.kcxb.2022.08.013

• 研究论文 • 上一篇    下一篇

基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统

张哲宇1, 孙果镓1, 杨保军2,*, 刘淑华2, 吕军1, 姚青1, 唐健2   

  1. (1. 浙江理工大学信息学院, 杭州 310018; 2. 中国水稻研究所水稻生物学国家重点实验室, 杭州 310006)
  • 出版日期:2022-08-20 发布日期:2022-09-16

Pheromone-baited intelligent monitoring system of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) based on machine vision and deep learning

ZHANG Zhe-Yu1, SUN Guo-Jia1, YANG Bao-Jun2,*, LIU Shu-Hua2, LU Jun1, YAO Qing1, TANG Jian2   

  1.  (1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China)
  • Online:2022-08-20 Published:2022-09-16

摘要: 【目的】为减轻基层测报人员工作量,提高稻纵卷叶螟Cnaphalocrocis medinalis性诱测报的准确率和实时性,实现监测数据可追溯,建立了基于机器视觉的稻纵卷叶螟性诱智能监测系统。【方法】稻纵卷叶螟性诱智能监测系统包括基于机器视觉的智能性诱捕器、基于深度学习的稻纵卷叶螟检测模型、系统Web前端和服务器端。利用工业相机、光源和Android平板搭建了智能性诱捕器的机器视觉系统;建立了基于改进的YOLOv3和DBTNet-101双层网络的稻纵卷叶螟检测模型;利用HTML, CSS, JavaScript和Vue搭建系统Web前端展示稻纵卷叶螟检测与计数结果;使用Django框架搭建服务器端,对来自智能性诱捕器通过4G网络上传的图像进行接收与结果反馈;采用MySQL数据库保存图像和模型检测结果等信息。【结果】基于机器视觉的稻纵卷叶螟性诱智能监测系统利用智能性诱捕器自动定期上传稻纵卷叶螟图像至服务器,部署在服务器上的目标检测模型对稻纵卷叶螟成虫进行实时自动检测,精确率和召回率分别达97.6%和98.6%;用户可通过Web前端查看稻纵卷叶螟检测结果图。【结论】基于机器视觉的稻纵卷叶螟性诱智能监测系统实现了图像的定时自动采集、稻纵卷叶螟成虫的准确检测与计数,实现了稻纵卷叶螟性诱监测的智能化和实时性,减轻了测报人员的工作量,监测数据可追溯。

关键词: 稻纵卷叶螟, 性诱捕器, 机器视觉, 智能监测, 深度学习, 目标检测

Abstract:  【Aim】 In order to reduce the workload of forecasting technicians, improve the precision and the real-time of Cnaphalocrocis medinalis forecasting and realize the traceability of monitoring pest data, a pheromone-baited intelligent monitoring system of C. medinalis based on machine vision was established. 【Methods】 The pheromone-baited intelligent monitoring system of C. medinalis includes an intelligent pest trap based on machine vision, a detection model of C. medinalis based on deep learning, a system Web front-end and a server. Several devices including an industrial camera, a light source and an Android pad were integrated into the machine vision system of pheromone-based intelligent trap. A two-layer network detection model based on improved YOLOv3 and DBTNet-101 was developed. HTML, CSS, JavaScript and Vue were adopted to build the Web front-end for displaying the results of detecting and counting the pests in the trap. Django framework was used to build a server to receive the images from the intelligent traps uploaded through 4G network and provide feedback. MySQL database was used to store the images, model detection results and other information.【Results】 The pheromone-baited intelligent monitoring system of C. medinalis based on machine vision used the intelligent trap to automatically upload the images of C. medinalis to the server on a regular time. The object detection model deployed on the server performs could automatically detect C. medinalis adults in real time, with the precision rate and recall rate of 97.6% and 98.6%, respectively. Users could check the detection results of C. medinalis images through the Web front-end. 【Conclusion】 The pheromone-baited intelligent monitoring system of C. medinalis can automatically capture the images, and accurately detect and count C. medinalis adults. This system can realize the real-time and intelligentized monitoring of C. medinalis by pheromonebaited trap, reduce the workload of forecasting technicians, and trace back the data easily.

Key words: Cnaphalocrocis medinalis, pheromone-baited trap, machine vision, intelligent monitoring, deep learning, object detection