昆虫学报 ›› 2024, Vol. 67 ›› Issue (10): 1372-1387.doi: 10.16380/j.kcxb.2024.10.008

• 研究论文 • 上一篇    下一篇

利用自我重复取样匹配技术组建生命表:以梨小食心虫为例

孔维娜1,2, 王怡1,2, 梅文浩1,2, 魏明峰3, 马敏1刘明蕾1,2, 张烨1,2, 齐心4,5,6, 马瑞燕1,2,*   

  1. (1. 山西农业大学植物保护学院, 太原 030031; 2. 山西农业大学植物保护学院, 省部共建有机旱作农业国家重点实验室(筹), 太原 030031; 3. 山西农业大学棉花研究所, 运城 044000; 4. 福建省农业科学院农业质量标准与检测技术研究所, 福州 350002; 5. 山东农业大学植物保护学院, 泰安 271018; 6. 福建农林大学应用生态研究所,
    闽台作物有害生物生态防控国家重点实验室, 福州 350002)
  • 出版日期:2024-10-20 发布日期:2024-11-18

Application of bootstrap-match technique for life table construction: A case study with Grapholita molesta (Lepidoptera: Tortricidae)

KONG Wei-Na1,2, WANG Yi1,2, MEI Wen-Hao1,2, WEI Ming-Feng3, MA Min1, LIU Ming-Lei1,2, ZHANG Ye1,2, CHI Hsin4,5,6, MA Rui-Yan1,2,*   

  1. (1. College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; 2. State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; 3. Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; 4. Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; 5. College of Plant Protection, Shandong Agricultural University, Tai′an 271018, China; 6. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crop, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
  • Online:2024-10-20 Published:2024-11-18

摘要: 【目的】针对一些昆虫在进行生命表研究时由于个体从出生到死亡的发育、存活和繁殖数据无法连续记录或难以记录的问题,本研究旨在引入一种适宜该类昆虫的生命表组建技术,并证明该技术的可靠性。【方法】将24个以传统方式组建的昆虫连续记录生命表拆分为未成熟期与成虫期生命表,再利用自我重复取样匹配技术重新组建新的完整生命表,与原始生命表的主要种群参数进行比较与验证。利用该技术重新组建包含滞育期的梨小食心虫Grapholita molesta生命表,并借助模拟软件预测越冬种群增长趋势,将预测的种群数据与田间取样数据进行对比。【结果】 24个种群基于0.5百分位净增殖率(R0)和周限增长率(λ)采用自我重复取样匹配构建的生命表的种群参数与原始生命表一致。梨小食心虫自我重复取样匹配生命表无滞育期与含180 d滞育期的生命表周限增长率(λ)、内禀增长率(r)与平均世代周期(T)有显著差异,但净增殖率(R0)与平均繁殖率(F)无显著差异。进行种群增长预测时,忽略滞育期会高估田间种群的增长潜力,呈现不现实的快速增长,而包含180 d滞育期的同时降低繁殖率并增加越冬期幼虫的死亡率的生命表,可得到更接近田间观察的实际种群结构。【结论】本研究展示了分别独立收集未成熟期和成虫期数据,利用两性生命表软件经100 000次自我重复取样和匹配,进而组建完整生命表的技术。借助年龄-龄期两性生命表理论的计算机模拟可以预测害虫种群增长,有助于确定防治的最佳时期和制定有效的害虫管理方案,以促进农业可持续发展。

关键词: 生命表, 自我重复取样技术; 随机匹配; 滞育昆虫; 计算机模拟; 梨小食心虫

Abstract: 【Aim】 This study aims to introduce a suitable life table construction technique for some insects whose data of development, survival and reproduction of all individuals from birth to death could not be recorded continuously or were difficult to be recorded, and demonstrate the reliability of this technique. 【Methods】 We split 24 life tables, whose data were constructed in the usual manner, i.e., the development and survival of all individuals and fecundity of female adults were recorded from birth to their deaths, and then used the bootstrap-match technique to reconstruct them as complete life tables. The main population parameters of the bootstrap-match life tables were compared with and validated against those of the original life tables. Subsequently, we applied this technique to reconstruct the life table of Grapholita molesta with diapause period, and then used simulation program to predict the growth trends of overwintering populations. The projected population data were compared with field sampling data. 【Results】 The population parameters of 24 bootstrap-match life tables constracted based on the 0.5th percentile of R0 and 0.5th percentile of λ were highly consistent with those of the original life tables. The bootstrap-match life table of G. molesta without diapause period showed significant differences in finite rate of increase (λ), intrinsic rate of increase (r), and mean generation time (T) compared to the life table with a 180-d diapause period, but there were no significant differences in net reproductive rate (R0) and mean fecundity (F). Ignoring the diapause period in population growth prediction would overestimate the growth potential of field populations, and result in an unrealistic rapid increase. The life table including a 180-d diapause period with reduced fecundity and increased mortality of overwintering larvae, however, could generate the population structure close to the field observations. 【Conclusion】 This study presented a technique to independently collect data of immature and adult stages, and then constructed a complete life table by using TWOSEX-MSChart with 100 000 bootstrap-match resamplings. Computer simulations based on the age-stage, two-sex life table can then be used to predict the growth of pest populations, which will be helpful to determine the optimal timing of effective pest management programs for sustainable agricultural development.

Key words: Life table, bootstrap technique, random match, diapause insects, computer simulation, Grapholita molesta