昆虫学报 ›› 2023, Vol. 66 ›› Issue (4): 575-590.doi: 10.16380/j.kcxb.2023.04.014

• 综 述 • 上一篇    下一篇

寄主植物与刺吸式昆虫互作防御的研究进展

张晶1,#,*, 段至柔1,#, 刘常权1, 彭英传1, 张万娜1, 肖海军2,*   

  1. (1. 江西农业大学昆虫研究所, 南昌 330045; 2. 北京林业大学草业与草原学院, 北京 100083)
  • 出版日期:2023-04-20 发布日期:2023-06-01

Research advances on the mutual defense between host plants and piercing-sucking insects

 ZHANG Jing1,#,*, DUAN Zhi-Rou1,#, LIU Chang-Quan1, PENG Ying-Chuan1, ZHANG Wan-Na1XIAO Hai-Jun2,*   

  1.  (1. Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China; 2. School of Grassland Science, Beijing Forestry University, Beijing 100083, China)
  • Online:2023-04-20 Published:2023-06-01

摘要:  寄主植物与昆虫在长期协同进化中形成了复杂的防御和反防御机制。本文系统综述了寄主植物与刺吸式昆虫互作防御的过程与机制。刺吸式昆虫利用特化的口针,吸食寄主植物组织汁液时,植物通过细胞膜表面或细胞内受体感知昆虫取食信号,并经过丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路、植物激素信号通路、钙离子信号通路、转录因子调控、Rop/Rac GTPase信号通路、活性氧(reactive oxygen species, ROS)通路等信号转导通路激活植物免疫。为了阻止害虫进一步取食,寄主植物形成了增强的物理屏障,并诱导产生次生代谢物、抗营养酶类、抗消化酶类和胼胝质沉积及释放挥发物等多种防御机制。在与寄主植物“博弈”的过程中,刺吸式昆虫往往会利用其取食时分泌的唾液成分,靶向植物靶标蛋白,通过破坏宿主植物的物理屏障,或抑制宿主植物的抗性信号转导,或抑制宿主次生代谢物的毒害作用,或通过跨界RNA和水平基因转移等方式抑制植物的防御反应,从而达到继续取食为害的目的。此外,基于植物与病原菌互作模式,结合寄主植物与刺吸式昆虫互作研究进展,总结了寄主植物与刺吸式昆虫互作模型的发展。寄主植物与昆虫互作过程复杂,研究寄主植物与刺吸式昆虫的互作防御过程与分子机制,不仅有助于加深对二者协同进化的理解,也可为开发作物害虫防控新途径和新技术提供理论基础与参考。

关键词: 寄主植物, 刺吸式昆虫, 协同进化, 防御与反防御, 互作机制

Abstract:  Host plants and insects have formed complex defense and counter defense mechanisms in the long-term co-evolution. In this article, we systematically reviewed the process and mechanism of the mutual defense in host plant-piercing-sucking insect interactions. The piercing-sucking insects use specialized needles to suck the sap of the host plant tissue. Plants sense insect feeding signals through cell membrane surface or intracellular receptors, and activate plant immunity through signal transduction pathways such as mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signaling pathway, calcium ion signaling pathway, transcription factor regulation, Rop/Rac GTPase signaling pathway and reactive oxygen species (ROS) pathway. To prevent further insect feeding, host plants form a strengthened physical barrier and induce the production of secondary metabolites, anti-nutritional enzymes, anti-digestive enzymes and callose deposition, and release volatiles and other defense mechanisms. In the process of “gaming” with host plants, piercing-sucking insects often use secreted salivary components during the feeding to target plant proteins. By destroying the physical barrier of host plants, or inhibiting the resistance signal transduction of host plants, or inhibiting the toxic effect of the host secondary metabolites, or by means of cross-border RNA and horizontal gene transfer, piercing-sucking insects inhibit the plant defense response and continue feeding to cause damage. In addition, based on the plant-pathogen interaction model, and combined with the research advance of the host plant-piercing-sucking insect interaction, we summarized the development of the interaction model between host plants and piercing-sucking insects. Since the host plant-insect interaction is sophisticated, a profound study on the mutual defense processes and molecular mechanisms of the host plant-piercing-sucking insect interaction will not only help deepen the understanding of their co-evolution, but also help to provide theoretical foundation and references for developing new approaches and technologies for crop insect pest control.

Key words: Host plant, piercing-sucking insect, co-evolution, defense and counter defense, interaction mechanism