昆虫学报 ›› 2025, Vol. 68 ›› Issue (10): 1438-1453.doi: 10.16380/j.kcxb.2025.10.013

• 综 述 • 上一篇    下一篇

蚜虫共生菌多样性研究进展

秦曼1, 姜立云1, 乔格侠1,2,*, 陈静1,*   

  1. (1. 中国科学院动物研究所, 动物多样性保护与有害动物防控全国重点实验室, 北京 100101;2. 中国科学院大学生命科学学院, 北京 100049)
  • 出版日期:2025-10-20 发布日期:2025-11-28

Research progress on aphid symbiont diversity

QIN Man1, JIANG Li-Yun1, QIAO Ge-Xia1,2,*, CHEN Jing1,*   

  1.  (1. State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
  • Online:2025-10-20 Published:2025-11-28

摘要: 微生物与动物之间的互惠共生在宿主的适应和进化过程中发挥着重要作用。蚜虫是一类吸食植物韧皮部汁液的昆虫,与多种共生菌建立了密切的共生关系。许多蚜虫种类严重为害农作物、果树、林木以及中草药,其中一些物种还是重要的世界性检疫害虫。蚜虫共生菌研究不仅有助于深入理解生物间的共生关系,还能够为害虫绿色防治提供理论指导。初级共生菌几乎存在于所有蚜虫体内,为蚜虫提供其食物中缺乏的必需氨基酸和B族维生素等营养物质;次级共生菌与蚜虫的生态适应性密切相关。本文概述了蚜虫共生菌的种类、组织分布、传播方式及其功能,并系统总结了球蚜科(Adelgidae)、根瘤蚜科(Phylloxeridae)和蚜科(Aphididae)不同类群中共生菌群落的物种组成。目前,蚜虫共生菌多样性的研究主要集中于探讨不同生物与非生物因素对共生菌群落结构的影响,涉及的因素包括蚜虫的种类、生物学特性、进化历史、寄主植物、地理分布和温度等环境因素。未来,应开展更多蚜虫类群的共生菌多样性调查,加强对肠道共生菌的关注,进一步探讨随机性和确定性过程在蚜虫共生菌群落构建中的相对贡献,识别核心共生菌及其生物学功能,并重点研究关键共生菌在RNA生物农药中的应用潜力,以开发绿色高效的蚜虫防治技术。

关键词: 蚜虫, 共生微生物; 植食性昆虫; 农林害虫; 菌群组成; 菌群结构; 害虫防治

Abstract:  Mutualism between microorganisms and animals plays a crucial part in the adaptation and evolution of hosts. Phloem-feeding aphids engage in intimate symbiotic associations with a variety of symbionts. Many aphid species cause enormous damage to crops, fruit trees, forest trees and medicinal plants, and some of them are important worldwide quarantine pests. Studies on aphid symbionts will advance our knowledge of symbiotic relationships between organisms and provide theoretical guidance for green pest management. Almost all aphid species harbour the primary symbionts to supply nutrients such as essential amino acids and vitamin B lacking in their diets. Secondary symbionts are closely related to the ecological adaptation of aphids. In this review, we outlined the species, tissue localization, transmission modes, and functions of aphid symbionts, and systematically summarized the species composition of symbiont communities in different groups of Adelgidae, Phylloxeridae and Aphididae. To date, most studies on aphid symbiont diversity have focused on different biotic and abiotic factors influencing the symbiont community structure, including aphid species, biological characteristics, evolutionary history, host plants, geographical distribution, and environmental factors (e.g., temperature). In the future, research should undertake extensive surveys of symbiont diversity across a greater variety of aphid taxa, enhance attention to gut symbionts, explore the relative contributions of stochastic and deterministic processes in the assembly of aphid symbiont communities, identify core symbionts and their biological functions, and focus on the potential application of key symbionts in RNAi-based biopesticides, so as to facilitate the development of efficient and environmentally friendly aphid pest management strategies.

Key words: Aphids, symbiotic microorganisms, phytophagous insects, agricultural and forestry pests, microbial community composition, microbial community structure, pest control