昆虫学报 ›› 2025, Vol. 68 ›› Issue (10): 1454-1464.doi: 10.16380/j.kcxb.2025.10.014

• 综 述 • 上一篇    下一篇

蚜虫初级内共生菌Buchnera的适应、演变与功能

凌晓雨1,2, 邸健1,2, 郭慧娟1,2, 孙玉诚1,2,*   

  1. (1. 中国科学院动物研究所, 动物多样性保护与有害动物防控全国重点实验室, 北京 100101;2. 中国科学院大学, 北京 100049)
  • 出版日期:2025-10-20 发布日期:2025-11-28

Adaptation, evolutionary changes and functions of the primary endosymbiont Buchnera in aphids

LING Xiao-Yu1,2, DI Jian1,2, GUO Hui-Juan1,2, SUN Yu-Cheng1,2,*   

  1. (1. State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
  • Online:2025-10-20 Published:2025-11-28

摘要: 蚜虫是一类世界性分布的刺吸式口器昆虫,依赖与初级内共生菌巴克纳氏菌属Buchnera建立共生关系获得生存繁衍所必需的营养物质。在长期协同演化过程中,蚜虫通过形成特化的含菌细胞介导与Buchnera的营养物质交换,并避免免疫激发,同依赖母体胞吞胞吐的机制形成Buchnera垂直传递以维持种群中的持续侵染。然而,内共生环境中稳定的营养来源导致Buchnera基因组发生显著退化。一方面,营养代谢冗余和环境压力响应基因的系统丢失使Buchnera基因组丢失90%以上基因,基因组急剧减小;另一方面,含菌细胞形成的物理屏障阻止Buchnera从外界细菌中获得新基因的途径,加之DNA修复系统关键基因的缺失引发突变修复能力丧失,导致基因组出现极端AT含量以及功能基因持续丢失。Buchnera基因组退化削弱了其代谢功能,表现为必需氨基酸合成能力的下降、无机盐代谢关键基因缺失以及热激蛋白表达调控缺陷,进而加速蚜虫物种形成并降低蚜虫的高温适应性。为了弥补专性共生的功能缺陷,蚜虫通过引入次级共生菌或替换初级共生菌进行功能补偿;部分蚜虫类群甚至形成双初级共生菌体系,通过功能分工缓解基因组退化压力。本文系统综述了蚜虫与Buchnera的胞内共生关系的演化悖论, Buchnera基因组退化在提升营养供给效率的同时也制约了蚜虫宿主对环境变化的适应能力,并提出了蚜虫类群为弥补专性共生限制所形成的新策略,这为深入理解昆虫菌胞内共生关系提供了新视角,并为靶向共生菌的蚜虫防控技术奠定理论基础。

关键词: 蚜虫; 内共生菌, 巴克纳氏菌属; 基因组退化; 共生关系; 环境适应性

Abstract:  Aphids, a group of widely distributed piercing-sucking insects, rely on the symbiotic relationship with the primary endosymbiont Buchnera to acquire essential nutrients for survival and reproduction. During the long-term coevolution, aphids have developed specialized bacteriocytes to mediate nutrient exchange with Buchnera while avoiding immune activation. This intracellular symbiosis is maintained through vertical transmission dependent on endocytosis and exocytosis mechanisms, ensuring persistent infection of Buchnera within aphid populations. However, the stable nutrient supply in endosymbiotic environment leads to extensive genome degeneration in Buchnera. On the one hand, the systematic loss of genes related to redundant nutrient metabolism and environmental stress response has resulted in the loss of over 90% of the genes of Buchnera genomes, leading to drastic genome reduction. On the other hand, the physical barrier formed by bacteriocytes prevents Buchnera from acquiring new genes from external bacteria, at the same time, the absence of key genes involved in DNA repair leads to the loss of mutation repair ability. These factors collectively result in extreme AT content and continuous functional gene loss in the genome of Buchnera. The genomic degeneration of Buchnera compromises its metabolic functions, manifesting as reduced essential amino acid synthesis, loss of key genes involved in inorganic salt metabolism, and dysregulation of heat shock protein expression. These deficiencies accelerate aphid speciation and reduce their adaptability under heat stress. To compensate for these obligate symbiotic constraints, aphids employ strategies such as acquiring secondary symbionts or replacing primary symbionts. Some lineages have even evolved dual primary symbionts, alleviating adverse effect of genomic degradation through functional complementation. In this review, we summarized the evolutionary paradox in aphid-Buchnera symbiosis. Although the degeneration of Buchnera genome improved the efficiency of nutrient supply, it restricted the adaptation of aphid hosts to the environmental changes. We further proposed novel compensatory strategies developed by aphids to overcome obligate symbiotic constraints, offering new perspectives for understanding relationship between insects and endosymbionts, and laying theoretical foundations for aphid control strategies targeting symbionts.

Key words: Aphid, endosymbiont; Buchnera, genome degeneration, symbiosis, environmental adaptation