昆虫学报 ›› 2022, Vol. 65 ›› Issue (5): 558-567.doi: 10.16380/j.kcxb.2022.05.003

• 研究论文 • 上一篇    下一篇

褐飞虱Nl15基因的克隆及功能分析

王福鑫, 王渭霞, 魏琪, 何佳春, 赖凤香, 傅强, 万品俊*   

  1. (中国水稻研究所, 水稻生物学国家重点实验室, 杭州 310006)
  • 出版日期:2022-05-20 发布日期:2022-05-08

Molecular cloning and functional analysis of Nl15 in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae)

WANG Fu-Xin, WANG Wei-Xia, WEI Qi, HE Jia-Chun, LAI Feng-Xiang, FU Qiang, WAN Pin-Jun*   

  1.  (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China)
  • Online:2022-05-20 Published:2022-05-08

摘要:  【目的】植食性刺吸式口器昆虫的唾液蛋白参与调控植物抗虫防御反应,影响其对寄主植物的适应性。本研究旨在通过克隆褐飞虱Nilaparvata lugens重要唾液蛋白基因Nl15,调查其时空表达模式,明确其在褐飞虱致害性中的作用。【方法】基于褐飞虱IR56种群转录组数据,用RT-PCR克隆褐飞虱基因Nl15 cDNA序列,并进行生物信息学分析。利用qPCR检测其在褐飞虱TN1和IR56种群不同发育阶段(卵、1-5龄若虫和雌雄成虫)和雌成虫不同组织(头、胸、腹和足)中的表达模式。通过显微注射dsRNA对褐飞虱TN1和IR56种群的4龄若虫进行Nl15的RNAi,利用qPCR检测Nl15 RNAi后褐飞虱若虫中Nl15的相对表达量以及Nl15 RNAi后褐飞虱若虫取食3 d时水稻植株中防御相关基因(OsLecRK4, OsMPK10, OsWRKY24, OsLox, OsNPR1和OsGns5)的相对表达量,并生物测定Nl15 RNAi后褐飞虱的存活率以及成虫蜜露量和体质量增量。【结果】克隆了褐飞虱Nl15 cDNA序列(GenBank登录号:OK181113),其开放阅读框长1 008 bp;预测编码335个氨基酸,理论等电点为7.54,分子量为38.7 kD,含有23个氨基酸的信号肽序列和一个糖基化修饰位点,不存在跨膜结构域和其他已知的功能域;Nl15与灰飞虱Laodelphax striatellus同源蛋白氨基酸序列一致性为45%。发育表达谱结果表明,Nl15在褐飞虱各个发育阶段均表达,在3-4龄若虫中的表达量最高;组织表达谱结果表明,Nl15在褐飞虱雌成虫头部中的表达量最高,且在IR56种群头部中的表达量高于在TN1种群头部中的。RNAi实验结果表明,与注射dsGFP的对照组相比,注射dsNl15的处理组中Nl15的表达量显著降低了89.5%,褐飞虱的存活率以及成虫蜜露量和体质量增量均显著降低,上述6个水稻防御相关基因的表达量显著上调。【结论】褐飞虱IR56种群中的Nl15参与褐飞虱与水稻的防御与反防御分子互作。本研究为进一步阐述褐飞虱克服抗虫基因的机制及揭示昆虫与植物互作的分子网络提供了思路。

关键词: 褐飞虱, IR56种群; Nl15; RNAi; OsLecRK4; 水稻防御

Abstract:  【Aim】 The phytophagous piercing-sucking insect saliva protein participates in the regulation of plant defense response against insects and affects insect adaptability to host plants. The aim of the present study is to clone the important salivary protein gene Nl15 in the brown planthopper, Nilaparvata lugens, and to investigate its temporal and spatial expression patterns, so as to clarify its roles in virulence of N. lugens. 【Methods】 Based on the transcriptome data of IR56 population of N. lugens, the cDNA sequence of Nl15 was cloned from N. lugens by RT-PCR, and subjected to bioinformatics analysis. The expression profiles of Nl15 in different developmental stages (egg, 1st-5th instar nymph, and female and male adult) and female adult tissues (head, thorax, abdomen and leg) of TN1 and IR56 populations of N. lugens were determined by qPCR. The RNAi of Nl15 was carried out by dsRNA microinjection into the 4th instar nymphs of TN1 and IR56 populations of N. lugens. The relative expression levels of Nl15 in N. lugens nymphs after RNAi of Nl15 and defense-related genes OsLecRK4, OsMPK10, OsWRKY24, OsLox, OsNPR1, and OsGns5 in rice plants fed by N. lugens nymphs for 3 d following RNAi of Nl15 were detected by qPCR. The survival rate and the honeydew amount and body weight gain of N. lugens adults after RNAi of Nl15 were determined by bioassay. 【Results】 The cDNA sequence of Nl15 (GenBank accession no.: OK181113) of N. lugens was cloned. It has an open reading frame of 1 008 bp in length, encoding 335 amino acids with the predicted isoelectric point of 7.54 and the molecular weight of 38.7 kD. The Nl15 protein contains a signal peptide sequence of 23 aa and a predicted glycosylation modification site, whereas has no transmembrane domain and other known functional domains. Nl15 shares 45% amino acid sequence identity with the homologous protein from Laodelphax striatellus. Developmental expression profile revealed that Nl15 was expressed in various developmental stages of N. lugens, with the highest expression level in the 3rd-4th instar nymphs. Tissue expression profile showed that Nl15 exhibited the highest expression level in the head of female adults of N. lugens, with a higher expression level in the head of IR56 population than in the head of TN1 population. RNAi results showed that the expression level of Nl15 in dsNl15 injection group was significantly down-regulated by 89.5%, the survival rate and the honeydew amount and body weight gain of adults of N. lugens were significantly decreased, and the expression levels of the above six rice defense-related genes were significantly up-regulated as compared to those in the control group (dsGFP injection group). 【Conclusion】 Nl15 in IR56 population of N. lugens is involved in the interaction of defense and counter defense between N. lugens and rice. This study provides insights into the mechanisms by which N. lugens overcomes resistance genes and the molecular network of interactions between insects and plants.

Key words: Nilaparvata lugens, IR56 population; Nl15, RNAi; OsLecRK4, rice defense