昆虫学报 ›› 2022, Vol. 65 ›› Issue (8): 949-957.doi: 10.16380/j.kcxb.2022.08.003

• 研究论文 • 上一篇    下一篇

西方蜜蜂工蜂蛹中期响应低温胁迫的差异表达基因分析

李寒1, 徐新建1,2, 周姝婧1,2, 周冰峰1,2, 朱晨煜1, 许宏智1, 姚丹1刘一名1, 王青3,4, 李想1, 王茗琦1, 朱翔杰1,2,*   

  1. (1. 福建农林大学动物科学学院(蜂学学院), 福州 350002; 2. 福建农林大学蜜蜂研究所, 福州 350002; 3. 广西中医药大学, 广西高发传染病中西医结合转化医学重点实验室, 南宁 530000; 4. 泉州师范学院, 福建泉州 362000)
  • 出版日期:2022-08-20 发布日期:2022-09-16

Analysis of differentially expressed genes in the middle pupal stage of Apis mellifera workers in response to low temperature stress

LI Han1  XU Xin-Jian1,2, ZHOU Shu-Jing1,2, ZHOU Bing-Feng1,2, ZHU Chen-Yu1, XU Hong-Zhi1, YAO Dan1, LIU Yi-Ming1, WANG Qing3,4, LI Xiang1, WANG Ming-Qi1, ZHU Xiang-Jie1,2,*   

  1. (1. College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2. Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 3. Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530000, China; 4. Quanzhou Normal University, Quanzhou, Fujian 362000, China)
  • Online:2022-08-20 Published:2022-09-16

摘要: 【目的】本研究旨在分析西方蜜蜂Apis mellifera工蜂蛹中期可能存在的低温应对机制以及低温对中期蛹发育的不利影响。
【方法】对西方蜜蜂工蜂8 d封盖子进行低温(20℃)处理96 h(T),以未经低温胁迫的8 d封盖子为对照(CK),通过转录组测序(RNA-seq)并筛选差异基因(differentially expressed genes, DEGs);对DEGs进行GO分类和KEGG通路分析。利用RT-qPCR对随机选取的5个DEGs的表达量进行验证。【结果】西方蜜蜂8 d封盖子低温(20℃)胁迫96 h的DEGs有1 101个;GO分类发现DEGs富集数最多的条目为代谢过程(142个DEGs)和细胞过程(142个DEGs),其次是结合(131个DEGs),催化活性(120个DEGs)和单有机体过程(118个DEGs);KEGG通路分析结果显示,DEGs显著富集于与氧化损伤密切相关的过氧化物酶体通路、D-谷氨酰胺代谢通路、D-谷氨酸代谢通路和谷胱甘肽代谢通路;此外,与激素调控相关的昆虫激素代谢通路、mTOR信号通路和FOXO信号通路上也有DEGs显著富集。随机挑选的5个DEGs的RNA-Seq与RT-qPCR结果一致。【结论】本研究发现低温状态下西方蜜蜂中期蛹主要通过体内激素调控发育进程,使其减速或停止发育以应对低温;低温通过影响其抗氧化酶表达量进而可能积累氧化损伤,从而对羽化后蜜蜂产生影响。本研究结果有助于理解发育阶段温度生态幅狭窄的昆虫对于低温的应对机制及低温对其的不利影响。

关键词:  西方蜜蜂, 中期蛹, 低温胁迫, 差异表达基因, 氧化损伤

Abstract: 【Aim】 This study aims to analyze the possible coping mechanism and the adverse effects in response to low temperature stress during the middle pupal stage of Apis mellifera workers. 【Methods】 The 8-d-capped broods of A. mellifera workers were exposed to cold temperature (20℃) for 96 h (T), with those unexposed to cold stress used as the 
control (CK), and then subjected to transcriptomic sequencing (RNA-seq) and differentially expressed gene (DEG) screening. In addition, GO classification and KEGG pathway analyses of DEGs were performed. The expression levels of  five randomly selected DEGs were verified by RT-qPCR. 【Results】 A total of 1 101 DEGs were detected in the 8-d-capped brood workers of A. mellifera exposed to cold temperature (20℃) for 96 h. GO classification showed that the GO terms with the largest number of DEGs were metabolism process (142 DEGs) and cellular process (142 DEGs), followed by binding (131 DEGs), catalytic activity (120 DEGs) and single-organism process (118 DEGs). The KEGG pathway analysis result showed that DEGs were significantly enriched in peroxisome pathway, D-glutamine metabolic pathway, D-glutamate metabolic pathway, and glutathione metabolic pathway, which are related to oxidative damage. In addition, DEGs were also significantly enriched in insect hormone metabolism pathway, mTOR signaling pathway and FoxO pathway related to hormone regulation. The results of RNA-Seq and RT-qPCR of the five randomly selected DEGs were consistent. 【Conclusion】 In this study, it has been found that the mid-staged pupae of A. mellifera cope with low temperature via regulating endogenous hormones, slowing down or stopping the development. In the pupae oxidative damage may accumulate by reducing the expression of antioxidant enzymes in low temperature stress, consequently causing detrimental effects on honeybees after emergence. The results of this study are helpful to understand the coping 
mechanism to low temperature in insects with narrow temperature ecological amplitude during developmental stage and the adverse effects of low temperature on them.

Key words: Apis mellifera, mid-staged pupae, low-temperature stress, differentially expressed genes, oxidative damage