昆虫学报 ›› 2023, Vol. 66 ›› Issue (3): 369-380.doi: 10.16380/j.kcxb.2023.03.010

• 研究论文 • 上一篇    下一篇

CMIP6气候变化情景下黑色枝小蠹全球潜在适生区分布预测

孙雪婷   

  1. (上海市园林科学规划研究院, 城市困难立地生态园林国家林业和草原局重点实验室, 上海城市困难立地绿化工程技术研究中心, 上海 200232)
  • 出版日期:2023-03-20 发布日期:2023-04-23

Prediction of global potential suitable area of the black twig borer, Xylosandrus compactus (Coleoptera: Scolytinae) under future climate change scenarios of CMIP6

SUN Xue-Ting   

  1. (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)
  • Online:2023-03-20 Published:2023-04-23

摘要: 【目的】黑色枝小蠹Xylosandrus compactus是一种重要的钻蛀性害虫,原分布于东南亚,其在全球范围内的扩散蔓延已造成入侵地多种寄主植物受害,导致巨大经济与生态损失。本研究旨在明确该害虫在全球的潜在适生区分布与变化,为其监测、早期预警与防治策略制定提供依据。【方法】利用ArcGIS设置缓冲区筛选黑色枝小蠹分布点数据,结合R计算所得的调控倍频(regularization multiplier)和特征组合对最大熵模型(maximum entropy model, MaxEnt)参数重置;通过刀切法和变量相关性分析对多种环境变量进行筛选;基于关键环境变量重建MaxEnt模型,结合当前气候数据和第六次国际耦合模式比较计划(Coupled Model Intercomparison Project Phase 6, CMIP6)中的4种强迫情境,对黑色枝小蠹全球潜在适生区的分布进行预测。【结果】经筛选,用170个黑色枝小蠹分布点数据构建MaxEnt模型;发现温差月均值、最冷月最低温、最暖季度平均温度、年降水量、降水量季节性变异系数、最湿季度降水量及最干季度降水量为影响该物种分布的7种主导环境变量;模型预测显示,当前气候条件下,黑色枝小蠹在60°N-45°S间均可分布,全球范围内低、中和高度适生区面积占全球陆地面积的比例分别为8.70%, 6.32%和2.79%;未来气候条件下,这3类适生区的分布面积均有不同程度的增加,以中等至高等强迫情景(SSP370)下各适生区增幅最大;黑色枝小蠹适生区的分布北界北移,除南极洲外的各大洲沿海区域均有其高度适生区分布,且有逐渐向内陆扩张的趋势。【结论】全球气候变化与人类活动为黑色枝小蠹的存活、生长发育、世代更迭以及种群增长提供了适宜的条件,建议根据黑色枝小蠹的潜在适生区等级,构建“分级应对”的监测预警体系与防控防治模式,以应对害虫为害。

关键词: 黑色枝小蠹, MaxEnt, 入侵种群, 监测预警, 分级应对

Abstract: 【Aim】The black twig borer, Xylosandrus compactus, is an important wood-boring insect pest native to Southeast Asia. It causes serious damage to multiple host plants, leading to substantial economic and ecological losses worldwide. This study aims to clarify the distribution and changes of global potential suitable areas of this pest, so as to provide a basis for its monitoring and early warning, and development of its control measures. 【Methods】The distribution sites of X. compactus were screened by using ArcGIS to set up the buffer. The maximum entropy model (MaxEnt) parameters were reset by regularization multiplier and feature combinations calculated by R. Various environmental variables were screened through the jackknife test and variable correlation analysis. The distribution of the potential global suitable areas for X. compactus was predicted based on the MaxEnt model reconstructed by key environmental variables, combined with the current climate data and four forcing scenarios in Coupled Model Intercomparison Project Phase 6 (CMIP6). 【Results】 After screening, the data from 170 distribution sites of X. compactus were used to construct the MaxEnt model. The seven dominant environmental variables affecting the distribution of X. compactus included monthly mean temperature difference, minimum temperature of the coldest month, mean temperature of the warmest quarter, annual precipitation, precipitation seasonality (coefficient of variation), and precipitation of the wettest quarter and precipitation of the driest quarter. The model prediction showed that under the current climate conditions, X. compactus can be distributed between 60°N and 45°S, and the lowly, moderately and highly suitable habitats of the global land area account for 8.70%, 6.32% and 2.79%, respectively. Under future climate conditions, the distribution area of the lowly, moderately and highly suitable habitats of X. compactus will increase to varying degrees, and the increase of the three kinds of suitable areas (lowly, moderately and highly suitable areas)was the largest under the moderately to highly complusive scenario (SSP370). The distribution of suitable areas of X. compactus shifted northwardly. The coastal regions on all continents except for Antarctica were highly suitable for the distribution of X. compactus, and the highly suitable habitat eventually expanded to inland.【Conclusion】 Climate change and human activity provide favorable conditions for the survival, growth, and development of X. compactus, as well as its generational shifts and population growth. Therefore, the preventive and control model of “graded response” is recommended to be developed in accordance with the possible suitable area level of X. compactus.

Key words: Xylosandrus compactus; MaxEnt, invasive populations, monitoring and early warning, graded response