昆虫学报 ›› 2025, Vol. 68 ›› Issue (4): 525-540.doi: 10.16380/j.kcxb.2025.04.014

• 综 述 • 上一篇    下一篇

番茄重要害虫与番茄攻防互作研究进展

康志伟1,#, 渠成2,#, 曹利军1, 林熠斌3, 孙江华1, 李建彩3,*   

  1. (1. 河北大学生命科学学院, 河北省生物互作基础学科研究中心, 生命科学与绿色发展研究院, 保定 071002; 2. 北京市农林科学院植物保护研究所, 北京 100097; 3. 中国科学院分子植物科学卓越创新中心, 植物性状形成与塑造全国重点实验室, 上海 200032)
  • 出版日期:2025-04-20 发布日期:2025-05-22

Research advances of the attack-defense interactions between important tomato pests and tomato

KANG Zhi-Wei1,#, QU Cheng2,#, CAO Li-Jun1, LIN Yi-Bin3, SUN Jiang-Hua1, LI Jian-Cai3,*   

  1.  (1. Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China; 2. Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 3. State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China)
  • Online:2025-04-20 Published:2025-05-22

摘要: 番茄是重要的园艺作物,同时我国是世界上最大的番茄生产国。近年来,番茄产业面临着日益严峻的虫害威胁,包括传统重要害虫烟粉虱Bemisi tabaci、西花蓟马Frankliniella occidentalis和棉铃虫Helicoverpa armigera及新出现的入侵害虫番茄潜叶蛾Tuta absoluta。解析番茄应答虫害的防御机制,尤其是具有高抗虫特性的野生番茄种质资源的抗虫机制,可以为番茄抗虫品种培育提供重要的基因资源,同时关键的抗虫代谢物也可以指导更安全和生态友好的植物源新型绿色农药的开发。本文从植物抗虫的各个层次综述了番茄害虫与番茄等寄主植物之间的互作关系,主要包括: (1)刺吸式和咀嚼式昆虫唾液蛋白被番茄识别及对抗虫免疫的影响;(2)番茄抗虫防御信号转导网络和核心防御相关转录因子的调控机制;(3)植物抗虫性实现的结构和代谢机制,包括毛状体、酰基糖、酚胺、甾体生物碱和挥发性物质等应答虫害并发挥抗虫作用的分子和生态学机制。未来研究应利用单细胞转录组和空间转录组等新技术,结合基因编辑遗传操纵手段,进一步厘清番茄抗虫信号通路和防御物质的合成与调控过程,从而更好地理解植物与昆虫之间的互作关系,为培育高产番茄抗虫品种奠定理论基础。

关键词: 番茄, 植物昆虫互作, 昆虫唾液蛋白, 防御信号转导, 防御代谢物

Abstract:  Tomato is one of the most important horticultural crops, and China is the largest producer of tomato in the world. In recent years, the tomato industry is facing increasingly severe pest threats including the traditional important pests (Bemisi tabaci, Frankliniella occidentalis and Helicoverpa armigera) and the newly emerged invasive pest Tuta absoluta. Elucidating the defensive mechanism of tomato especially wild tomato germplasm resource, which has significantly higher resistance to pests, can provide important genetic resources for breeding process of insect-resistant tomato varieties. Meanwhile, the key insect-resistant metabolites of tomato can also offer valuable insights into the development of new safer and more eco-friendly botanical pesticides. In this article, we summarized the interactions between tomato pests and host plants like tomato across multiple levels of insect resistance mechanisms in plants. Key topics include: (1) the recognition of saliva proteins from piercing-sucking and chewing insects by tomatoes and its impact on anti-insect immunity; (2) the signal transduction networks of insect resistance and the regulatory mechanisms of core defense-related transcription factors in tomato; (3) structural and metabolic bases of insect resistance in plants, such as trichomes, acylsugars, phenolamides, steroidal alkaloids, and volatile compounds, which respond to pest attacks and confer insect resistance through molecular and ecological pathways. Future research should leverage emerging technologies like single-cell transcriptomics and spatial transcriptomics, combined with gene editing and genetic manipulation tools, to further clarify the signaling pathways of insect resistance and the synthesis and regulation of defense compounds in tomato. These efforts will deepen our understanding of plant-insect interactions and lay a theoretical foundation for breeding high-yield, insect-resistant tomato varieties.

Key words: Tomato, plant-insect interaction, insect saliva protein, defense signaling transduction, defensive metabolites