›› 2009, Vol. 52 ›› Issue (10): 1103-1109.

• RESEARCH PAPERS • Previous Articles     Next Articles

High temperature tolerance and thermoregulation behavior of the oriental migratory locust, Locusta migratoria manilensis (Orthoptera: Acrididae)

  

  • Online:2009-10-20 Published:2009-10-20

Abstract: To clarify the ability of high temperature tolerance and thermoregulation behavior of the oriental migratory locust, Locusta migratoria manilensis, we adopted the methods of high-temperature breeding and offering radiant heat and wind to research the high temperature tolerance of the locust at different developmental stages, the relationship between body temperature (Tb) and air temperature (Ta) and radiant temperature (Tr), choosing behavior of locusts to radiant heat, the increasing velocity of Tb and the effects of radiant angle and wind power to Tb. The results showed that LT90 reached 326.4 h at 44℃ and 20.6 h at 50℃, respectively. In the condition without radiant heat, Tb increased with Ta. Locusts showed thermoregulation behavior when Ta was raised to 32℃. When Ta was raised at the velocity of 0.5℃/min, the percentage of individuals with temperature undulation was 53.7%, the average undulation range of Tb was 1.15℃, the average undulation time was 5.2 min and the average initiative undulation of Tb was 47.2℃. The lethal time of adults was longer than that of nymphs. In the condition with radiant heat, locusts inclined to choose the bottom of cage when the radiant temperature of the top was raised gradually; thermoregulation behavior was stronger than that in the condition without radiant heat. Under different radiant angles and different wind levels and illumination combinations, locusts displayed significant differences in Tb. The results indicate that Locusta migratoria manilensis has obvious high temperature tolerance and thermoregulation behavior which can adjust Tb to the best physiological condition.

Key words: Locusta migratoria manilensis, high temperature tolerance, thermoregulation behavior, radiant heat, radiant angle, wind speed