›› 2012, Vol. 55 ›› Issue (9): 1037-1045.doi:

• RESEARCH PAPERS • Previous Articles     Next Articles

Differential allocation of resources to flight muscles and ovaries in different morphs of the wing-dimorphic cricket Velarifictorus ornatus (Orthoptera: Gryllidae)

ZHAO Lu-Quan, ZHU Dao-Hong, ZENG Yang   

  • Received:2012-05-21 Revised:2012-09-09 Online:2012-09-20 Published:2012-09-20
  • Contact: ZHU Dao-Hong E-mail:daohongzhuja@yahoo.com.cn
  • About author:zhaolvquan80@163.com

Abstract: The wing-dimorphic cricket Velarifictorus ornatus exists physiological trade-offs between flight muscles and ovarian development. In this study, we quantitatively analyzed the contents of protein, glycogen and total lipids in flight muscles and ovaries between the long-winged and short-winged females by coomassie brilliant blue G-250, anthrone method and sulphophosphovanillin method, respectively. At 10 d after adult emergence, there was no difference in body weight (P>0.05) but the short-winged females loaded more eggs than long-winged females (P<0.05). De-alation could stimulate the long-winged females to produce more eggs than the intact long-winged females (P<0.05). There was no variation in contents of protein, glycogen and total lipids in light muscles of short-winged females after adult emergence but the protein content in flight muscles of long-winged females reached the maximum (564.4±87.5 μg/♀) at day 3, while the contents of glycogen and total lipids also reached the maximum (85.2±21.7 μg/♀, 5 284.7±1 267.4 μg/♀, respectively) at day 5, and then the contents of protein, glycogen and total lipids decreased from day 5. The contents of protein, glycogen and total lipids in flight muscles of long-winged females were much more than those of short-winged females at 1, 3, 5 and 10 d after emergence (P<0.05), while the contents of protein, glycogen and total lipids in ovaries of short-winged females were more than those of long-winged females after adult emergence (P<0.05). Age had obvious effect on the allocation of protein, glycogen and total lipids between the flight muscles and ovaries (P<0.05). De-alation stimulated the increase in the contents of protein, glycogen and total lipids in ovaries of long-winged females, while de-alation elicited the decrease in the contents of protein, glycogen and total lipids in flight muscles of long-winged females. At 10 d after de-alation, the contents of total lipids in flight muscles decreased to 2 394.9±1 461.8 μg/♀, which was only half of the maximum and similar to that of the short-winged females. Application of juvenile hormone Ⅲ (JH Ⅲ) induced the increase in the contents of protein, glycogen and total lipids (P<0.05) in the ovaries of long-winged females but had no effect on their contents in flight muscles (P>0.05). Application of precocene Ⅰ had no effect on the contents of protein, glycogen and total lipids in ovaries of short-winged females (P> 0.05). These results indicate that long-winged females use resources preferentially for the development of flight muscles, but short-winged females use them for the development of the ovaries first, and application of juvenile hormone can change resource allocation between flight muscles and ovaries in long-winged females.

Key words: Velarifictorus ornatus, wing-dimorphism, flight muscles, ovary, resource allocation