昆虫学报 ›› 2020, Vol. 63 ›› Issue (3): 365-380.doi: 10.16380/j.kcxb.2020.03.013

• 综 述 • 上一篇    下一篇

昆虫气味结合蛋白的研究进展

杜亚丽1, 徐凯2, 赵慧婷3, 刘玉玲2, 牛庆生2,*, 姜玉锁1,*   

  1. (1. 山西农业大学动物科技学院, 山西太谷 030801; 2. 吉林省养蜂科学研究所, 吉林吉林 132108; 3. 山西农业大学生命科学学院, 山西太谷 030801)
  • 出版日期:2020-03-20 发布日期:2020-04-16

Research progress in odorant binding proteins of insects

DU Ya-Li1, XU Kai2, ZHAO Hui-Ting3, LIU Yu-Ling2, NIU Qing-Sheng2,*, JIANG Yu-Suo1,*   

  1.  (1. College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; 2. Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, China; 3. College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China)
  • Online:2020-03-20 Published:2020-04-16

摘要: 摘要: 昆虫主要依赖其复杂且灵敏的化学感受系统来识别并区分外界环境中的各种化学信号。嗅觉是负责嗅觉信号传导的感官方式,能够引起昆虫觅食、产卵、交配和躲避天敌等对生存和繁殖至关重要的行为反应。在嗅觉感知过程中,气味结合蛋白(odorant binding proteins, OBPs)最先与外界脂溶性化学物质相互作用,并将其转运至化学受体神经元上,激活树突膜表面分布的嗅觉受体(olfactory receptors, ORs),是嗅觉系统正常运行的必需蛋白。近年来,随着高通量测序和分子生物学技术的快速发展,越来越多的昆虫OBPs相继得以鉴定并开展功能研究。昆虫OBPs是一类可溶性的小分子蛋白,一般由6个α-螺旋构成一个稳定、紧密的疏水性结合腔,其构象变化因昆虫种类和配体结构不同而有所差异。OBPs的分布不受限于嗅觉器官,还在口器、足、中肠、腺体等非嗅觉组织中表达,具有嗅觉识别、味觉感受、营养物质转运、信息素合成与释放、组织发育与分化等生理功能。OBPs行使以上功能的共同特性为结合和溶解包括信息素组分、普通气味分子和非挥发性物质等的疏水性小分子物质。昆虫OBPs的稳定性和多功能性暗示其可广泛应用于害虫防治、生物传感器、分析化学、生态学等多个领域。本文对过去20多年来昆虫OBPs的相关研究进行综述,为进一步深入开展OBPs的功能研究提供理论参考。

关键词:  昆虫, 嗅觉, 气味结合蛋白, 嗅觉系统, 嗅觉受体, 配体结构

Abstract: Abstract: Insects depend critically on their sophisticated and sensitive chemoreception system to recognize and distinguish a variety of semiochemical signals from the environment. Olfaction is a sensory modality responsible for the olfactory signal transduction, which can evoke insect survival and reproduction behaviors, such as foraging, oviposition, capulation, and avoiding predators. As essential proteins in the normally functioning olfactory system, odorant binding proteins (OBPs) initially interact with external lipophilic chemicals in the process of olfactory sensing, and transfer them to chemical receptor neurons to activate olfactory receptors (ORs) distributed on the surface of dendritic membrane. In recent years, with the rapid development of high-throughput sequencing and molecular biology technologies, more and more OBPs have been identified in different species and their biological functions have been explored. Insect OBPs are a class of soluble small molecular proteins, and generally contain a stable and compact hydrophobic binding pocket consisting of 6 αhelices, where the conformational change varies with insect species and ligand structures. The expression of OBPs is not limited to olfactory organs, but also in non-olfactory tissues such as mouthparts, legs, midgut and glands. Insect OBPs can perform different physiological roles in olfaction recognition, gustatory perception, nutrient transport, pheromone synthesis and release, and histological development and differentiation. It is reasonable to suspect that the common property linking their very different functions is the ability of OBPs to bind and solubilize small hydrophobic compounds including pheromone components, common odor molecules, and nonvolatile substances. The stability and versatility of OBPs suggest their extensive application potentials in many fields including pest control, biosensors, analytical chemistry and ecology. In this article we reviewed the relevant studies of insect OBPs over the last 20 years to provide theoretical references for the in-depth study on the functions of OBPs.

Key words:  Insect, olfaction, odorant binding protein, olfactory system, olfactory receptor, ligand structure